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Received 5 August 1998

Abstract. A dimerized quantum Heisenberg orXY antiferromagnetic chain has a gap in the
spectrum. We show that a weak incommensurate modulation around a dimerized chain produces
a zero-temperature quantum critical point. As the incommensuration wavelength is varied, there
is a transition to a modulated gapless state. The critical behaviour is in the universality class
of the classical commensurate–incommensurate (Pokrovsky–Talapov) transition. An analogous
metal–insulator transition can also take place for an incommensurate chain.

The one-dimensionalS = 1
2 quantum antiferromagnetic Heisenberg model is a prototypical

example of quantum fluctuations destroying the classical ground state [1–6]. Such a
uniform chain, with gapless excitations, can undergo a spin–Peierls (SP) transition to
a lattice dimerized state via the interplay of spins and lattice distortion, going over to
an incommensurate phase in large magnetic fields [7–10]. The SP state has a gap in
the spectrum. However, specific heat measurements in the incommensurate phase of the
inorganic insulator CuGeO3 [10] hint [11, 12] towards a gapless phase. This, then, raises
a few basic questions. Can a weak incommensuration around a dimerized Heisenberg (or
XY ) chain supportgaplessexcitations, even though the dimerized casedoes not? If it is
true, then is there a quantum critical point (QCP) separating a gapless state and a gappy
state (a state with a gap)? What would be the nature of the quantum critical point?

In order to address these issues for the incommensurate phase, and to gain an
understanding of the underlying phenomena, one may consider a simpler situation of a static
case where the coupling constant follows the incommensurate modulation of the lattice. We
therefore consider a model Hamiltonian

H =
N∑
j=1

[
Jj

2
(S+j S

−
j+1+ S−j S+j+1)

]
+ h

∑
j

Szj (1)

whereS±j = Sxj ± iSyj are the spin raising and lowering operators at sitej , andh is the
magnetic field in thez-direction. The case of interest in this paper isJj = J+δ cos(π+q)j ,
with δ � J > 0. This corresponds to a weak incommensuration around the dimer phase
(q = 0). For δ = 0, the system is gapless (uniform chain). Forq = 0, a gap develops in
zero field forδ 6= 0 but a gapless phase is recovered above a critical magnetic fieldhc [13].
Our aim is to get the phases in the(q, h) plane forδ � 1, based on low-energy excitations.
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We are considering theXY model, because, so far as the gap is concerned the difference
betweenXY and Heisenberg chain is not crucial (see equation (6)). Admittedly, for the SP
problem, the spin–lattice interaction and the magnetic field play important roles [14] and
correlate [15]q andh. A real system would follow a particular trajectoryq = q(h) in the
(q, h) phase diagram. We therefore takeq andh as independent parameters.

Equation (1) also describes, via a Jordon Wigner transformation [16], spinless fermions
on a one-dimensional lattice—a description we use in this paper. By definingCj = K(j)S−j
as the fermionic annihilation operator, whereK(j) = exp(iπ

∑j−1
n=1 S

+
n S
−
n ) is the nonlocal

kink operator, the spin Hamiltonian of equation (1) can be written as

H = 1
2

∑
Jj (C

†
j Cj+1+ C†j+1Cj)− h

∑
j

C
†
j Cj . (2)

Note that the fermions haveincommensurate hoppingrates, andh acts as a chemical
potential.

A QCP is a phase transition point with a diverging length scale induced by a change of
a parameter of the Hamiltonian at zero temperature (Chakrabartiet al [1]). Since quantum
fluctuation is responsible for such criticality, the dynamic exponentz, determining the
scaling of time and space, becomes more important than in thermal critical points (τ ∼ ξz
with τ andξ as characteristic diverging time- and length scales). In the spin–chain context,
a well known QCP is the dimerization pointδ = 0 for q = h = 0 for equation (1) or (2).
This critical point (separating a gapless state and a gappy state) corresponds to free fermions
with z = 1 and a correlation length diverging asξ = δ−1. The spin–spin correlation function
C(r, δ) = 〈Szi Szi+r〉 has a scaling behaviourC(r, δ) = r−ηf (rδ) with η = 2 [17]. For the
QCP of concern in this paper, we start from the dimerized gappy state and change the
incommesurationq keepingδ fixed.

A QCP for q = 0 at δ = 0 ensures the existence of a continuum limit of the lattice
problem. We use this continuum limit to study the effect ofq on the phase diagram, and in
a renormalzation group (RG) framework only the relevant terms need to be kept. To go to
the continuum limit, we adopt the technique of bosonization for the low-energy excitations
around the fermi points [18, 16, 19]. Also since wavenumber is no longer a good quantum
number, we work in the real space. The low-energy excitations of equation (2) across
the fermi surface on the two branches can be described byL (left) or R (right) moving
particles with linear spectrum. This givesz = 1. In the continuum limit, the Hamiltonian
is written in terms of the (bosonic) phase variables. The free bosonic theory corresponding
to Jj = constant,h = 0 turns out to be just the harmonic lattice Hamiltonian, which
forms the basis for the subsequent analysis of the remaining terms such as dimerization,
incommensuration around the dimerized case and the magnetic field. The relevance or
irrelevance of various terms come from their scaling behaviour on a long length and
timescale. In the RG approach, the scaling behaviour is obtained by integrating out the short
distance fluctuations in both directions and incorporating their effects in the parameters of
the problem. This is implemented by studying the Euclidean version of the problem (i.e.
imaginary time,t → it).

For low-energy excitations, we define new operatorsaj = (i)−jCj to eliminate the
fast variation at the Fermi vector. From these, right and left movers are defined by the
chiral transformationR(j) = (a2j − a2j−1)/

√
2 andL(j) = (a2j + a2j−1)/

√
2 so that the

continuum version of the Hamiltonian can be written as

H = i
∫

dx J [L†(x)∂xL(x)− R†(x)∂xR(x)] (3a)
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− i

2

∫
dx ∂J (x)(R†(x)R(x)− L†(x)L(x)) (3b)

+ i

2
a0

∫
dx ∂2J (x)(R†(x)L(x)− L†(x)R(x)) (3c)

where for simplicity the modulated part of the coupling has been ignored in equation (3a).
This is justified by the modified Harris criterion of [22] since incommensuration
δ cos(2kf + q)x is bounded. The notation∂J (x) and ∂2J (x) denote the appropriate
continuum limit of the discrete difference of the modulation of the couplings.

The bosonic operators are obtained from the phases [8, 23] ofR(x) andL(x),

R(x) = 1√
2πa0

exp(ikf x − φ1(x)) (4)

L(x) = 1√
2πa0

exp(−ikf x − φ2(x)) (5)

with kf = π/2, so thatθ(x) = i(φ1(x)+φ2(x)), and the conjugate momentump are related
to the density and current respectively as∂θ/∂x = R†R + L†L and p = R†R − L†L.
With this choice, the free part of the bosonic Hamiltonian (analogous to the first term,
equation (3a)) is the standard harmonic chain Hamiltonian

H0 = 1

2π

∫
dx

[
1

K

(
dθ

dx

)2

+K(πp)2
]

(6)

in units of h̄ = 1 and spin wave velocity = 1. Here,K = 4 for theXY model. For the
full isotropic Heisenberg Hamiltonian or interacting fermions in the fermionic language,
K = 2. The second term, equation (3b), is analogous to a current-type term which is absent
if one goes over to the dimer limit (recovering translational symmetry) and is expected in
the incommensurate case on symmetry grounds (or lack of it). In the bosonic variables, the
current term in equation (3b) is like δq sinQxp(x), whereQ = 2kf + q, and it vanishes in
the limit q → 0. However, because of the oscillatory coefficient with average zero over a
period, we ignore this term in the present analysis. The third term (3c) shows that a spatially
varying J gives rise to a umklapp scattering process which apparently violates momentum
conservation by 2kf . This is a special term needed mainly because of the underlying lattice
in the problem. Considering only slow variations in the bosonic fieldθ , the umklapp term
can be written [23] as≈ δ

4π

∫
dx Q2 cos(θ(x)− [2kf −Q]x), by shiftingθ → θ−π/2. The

bosonized version of the incommensurate Hamiltonian is therefore (prime denoting spatial
derivative)

H = 1

2π

∫
dx

[
1

K
(θ ′)2+K(πp)2

]
− δπ

4

∫
dx cos(θ(x)+ qx). (7)

The dimer limit is restored by takingq = 0 and in this limit withkf = π/2 the umklapp
term agrees with Nakano and Fukuyama [23] who obtained a similar term in the presence
of a constant bond alteration. The above bosonic Hamiltonian has resemblance with the
Hamiltonian that appears in theory of incommensurate crystals [24]. In those problemsq

plays the same role of incommensuration vector. Such a Hamiltonian also occurs in the
Frenkel–Kontorowa model [25] of a harmonic chain in an external cosine potential. This
similarity shows that the solitons expected in such cosine potentials are also important in
the spin–chain problem.

To study the relevance or irrelevance of the sine-Gordon term, we implement a RG
analysis, well documented in [26, 24]. The basic steps involve obtaining a functional integral∫

eiS(θ) dθ whereS(θ) is a dimensionless action. By going over to imaginary timeτ = it
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the integral is written as a partition function of a classical two-dimensional problem. A
further shift of the field variableθ(x, τ ) = θ(x, τ )−qx, gives the classical Hamiltonian† as

H = 1

πK

∫
dτ dx [ 1

2 θ̇
2+ 1

2(θ
′ − q)2−1 cosθ ] (8)

where1 = δπ2K/4.
The RG procedure [26] forq = 0 involves decomposing the cosine term into fast

and slowly varying components ofθ for 1 � 1 and then averaging out the fast
varying component with respect to its Gaussian distribution. Absorbing the contribution
from the averaged fast component in1 we can have the renormalization of the1 as
1R = 11/(1−β2/8π), whereβ2 = πK. For β <

√
8π , the sine-Gordon term is relevant and

yields a massive theory. The Heisenberg or theXY model belongs to this category and, as
expected, any dimerization produces a gap in the spectrum, with the gap scaling as1R, and
therefore scaling asδ8/(8−K). With the incommensurate term, the system can disregard the
potential ifqθ ′ is comparable to the cosine potential energy. This gives the phase transition
point [24] asqc ∼ δ4/(8−K). For theXY model, the transition to the gapless phase is in the
same universality class as the commensurate–incommensurate transition in two dimensions
[24, 27]. For this universality class, the relativistic invariance leading toz = 1 is lost. The
spatial length scale exponent isν = 1

2 with z = 2 [29, 28].
The results imply that the gap at the Fermi level persists for smallq incommensurations

around the dimerized phase. Isolated states might well appear in the gap but they
do not destroy the gap. The spins basically follow a dimerized lattice. For larger
incommensuration, i.e. forq > qc, the spins follow the dimerized lattice over a finite length
scale separated by defects or solitons. Such (spin1

2) solitons do exist for the dimerized
chain [23]. Though the solitons cost energy, a many soliton state for largeq would be
favourable compared with, say, following the dimerized lattice over the whole length (a
no soliton state) because of the energy gain through the ‘q ’ term in equation (8). In this
phase with a finite density of solitons, translational invariance is recovered because these
solitons are not bound to the underlying lattice, and one gets back a massless mode. The
densityρ of these solitons is given by〈θ ′〉, and this density can act as the order parameter
for the transition. In the gappy phase,ρ is zero (no soliton or domain wall), whileρ is
nonzero in the gapless phase. The dependence ofρ on the deviation from the critical point
is obtained by matching the chemical potential to the relativistic Fermi energy. This leads
to a density∼(q − qc)β with β = 1

2. In one dimension, a length scalel can also be defined
from ρ as the average separation of the solitons. This lengthl diverges (l ∼ (q − qc)−ν)
with an exponentν = β = 1

2 as the critical point is reached on the gapless side. Because
of the high energy involved in the soliton formation, there will be no critical divergences in
the gappy state [28, 29, 27]. The gapless phase is not identical to the free fermion phase,
mainly because of the existence of a length scalel for the average domain size within which
the system follows the dimerized lattice. For example, the equal time spin–spin correlation
functionC(r, q) would have an algebraic decay as for free fermions or the dimerization QCP
with η = 2, but for the incommensurate QCP, there will be an additional oscillatory factor
cos(r/ l) [28, 29]. Such oscillatory factors would be detectable in scattering experiments.

For the spin system, the phase transition induced by the incommensurationq signals
the formation of a band at the fermi surface (in zero field) through the wandering of the
solitons which in one dimension also act like noninteracting fermions [28, 27]. The low-
lying spectrum therefore becomes gapless. A simple dimensional analysis suggests that

† Note that the current term would have changed theθ̇ term as well, and the general form of the square gradient
term would have been(∇θ −A(x))2 with A depending only on the space coordinate.
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the width of the band formed around the Fermi level isw ∼ 1/l2. We, therefore, expect
the bandwidth to vanish asw ∼ |q − qc|2β , i.e. linearly on the gapless side. According
to the bosonization rules the local magnetization is proportional to〈θ ′〉 so that the soliton
density also determines the magnetization in the phase. Therefore the gappy phase will
be nonmagnetic but the gapless phase is magnetic and the magnetization vanishes with the
Pokrovsky–Talapov exponentβ = 1

2.
So far we have considered the zero-field case. The magnetic field acts as the chemical

potential of the fermions, as seen in equation (2), and so long as the Fermi surface is in
a band, the equivalent bosonized Hamiltonian will be of the form equation (6), with a
renormalizedK and the spin wave velocity (taken to be unity). Sinceh couples to∂θ/∂x,
such a magnetic field for a dimerized chain would have an equivalent bosonized Hamiltonian
as equation (8) withh replacingq. The critical behaviour as the Fermi surface reaches the
boundary of the gap will therefore be similar to what we have already studied. This has
explicitly been shown in [13]. If the band formed by the solitons lies entirely in the original
gap, then by shifting the Fermi level the system can go from a gapless to a gappy state and
then again to a gapless phase.

Our analysis though aimed at the spin problem is equally valid for hopping spinless
fermions on a one-dimensional incommensurate lattice, i.e. on a lattice with incommensurate
hopping rates, as given by equation (2). We can therefore conclude that for a half-filled
lattice, there will be an insulator–metal transition as the incommensuration wavelength
is varied. One-dimensional incommensurate systems can therefore be classified as
metals or insulators based on the incommensuration. It might be possible to observe
such a metal–insulator transition in an incommensurate crystal (incommensuration around
dimerized lattice) by changing say temperature or other external parameters that control the
incommensuration of the lattice.

As emphasized at the beginning, our analysis is tied to the dimerized gappy phase, the
existence of a continuum limit, and the perturbative RG (i.e.δ � 1). From the similarity
with the Frenkel–Kontorowa model in the continuum limit, equation (7), and the possibility
of a gap in the original Hamiltonian of equation (1) whenever the wavevectorQ = π + q
is a rational fraction of the Fermi wavevector, it is expected to have stable lock-in phases
[24, 25] around certain rational fractions. Our procedure would then yield similar critical
behaviour around each such lock-in gappy phase. To get the full phase diagram (and the
possibility of a Devil’s staircase [24, 25]) one needs to study the original lattice model as
the strength of the incommensurationδ is increased. Also strong incommensuration may
completely destroy the band structure yielding point spectrum as known for quasiperiodic
systems [30]. These remain to be studied.

To summarize, we have studied the effect of incommensuration in a quantum
antiferromagnetic Heisenberg orXY chain and found a quantum critical behaviour induced
by incommensurabilityq around dimerization. Using RG results we find that, in zero
magnetic field, with the increase of the lattice incommensurability the massive theory
reduces to a massless theory through acontinuous transition at zero temperature. This
indicates a transition from a nonmagnetic gappy (as in the dimerized case) to a gapless
magnetic phase. The critical behaviour of this transition is found to be in the same
universality class as the two-dimensional commensurate–incommensurate transition, with all
singular features appearingonly on the incommensurate gapless state. Correlation functions
will have characteristic oscillatory factors that distinguish the incommensurate phase from
the gapless free fermion phase. This prediction could be tested in synthetic one-dimensional
magnetic chains. We have also pointed out that our results are equally valid for spinless
fermions on special types of incommensurate crystals. Therefore the prediction and critical
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nature of the metal–insulator transition induced by incommensuration around a dimerized
lattice can be tested in properly fabricated incommensurate heterojunctions [31].

We thank T Nattermann for suggesting this problem. SM thanks SFB341 for financial
support. SMB thanks T Nattermann for hospitality.
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